\[A = (a_{ij}) \]

where

\[A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \]

and

\[M = \begin{pmatrix} m_{11} & \cdots & m_{1n} \\ \vdots & \ddots & \vdots \\ m_{m1} & \cdots & m_{mn} \end{pmatrix} \]

is another matrix.

Diagram:

[Diagram image]

\[0: i \rightarrow 0 \quad \forall i \neq 0 \]
\[\text{If } i > 0 \text{ then go to } x \]

\[\text{If } i = 0 \text{ then go to } y \]

\[
\begin{pmatrix}
\alpha & 0 \\
0 & \gamma
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}
\]
\[\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \]

\[\begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \]

\[A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \]

\[\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \]

\[\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \]

\[\begin{pmatrix} 0 \\ 2 \end{pmatrix} \]

\[\begin{pmatrix} 3 \\ 0 \end{pmatrix} \]

\[\begin{pmatrix} 0 \end{pmatrix} \]

\[\begin{pmatrix} 2 \end{pmatrix} \]

\[\begin{pmatrix} 3 \end{pmatrix} \]
\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

Multiply by

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Result:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\]

Multiply

\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\]
Let $A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 0 \\ -1 & 2 \end{pmatrix}$. Then $A + B = \begin{pmatrix} 5 & 1 \\ -1 & 3 \end{pmatrix}$. A row in column n of A, A_n, can be expressed as $A_n = \begin{pmatrix} a_{n1} & \cdots & a_{n2} \end{pmatrix}$.
\[
\text{ker } A \triangleq \{ x \mid A x = 0 \}
\]

\[
A = \begin{pmatrix} 2 & -1 \\ 0 & -1 \end{pmatrix}, \quad A = 3
\]

\[
A = \begin{pmatrix} 6 & 3 \\ 0 & -3 \end{pmatrix}
\]

\[
\text{dim } \text{ker } A = 2 + \text{dim } \text{ker } A
\]
\[
\left(\sum_{i=1}^{n} a_i b_i \right) = \left(\sum_{i=1}^{n} a_i \right) \left(\sum_{i=1}^{n} b_i \right)
\]
\[\begin{align*}
C_1 &= 1 - 1 = 0 \\
C_2 &= 2 + 2 + 0 = 4 \\
C_3 &= 2 - 1 + 2 = 3 \\
C_4 &= 1 + 1 + 2 - 0 + 0 - 3 = 1
\end{align*} \]

\[
A = \begin{pmatrix}
0 & 0 \\
1 & 2
\end{pmatrix},
B = \begin{pmatrix}
2 & 0 \\
3 & 0
\end{pmatrix}
\]
\[
\begin{pmatrix}
1 & 2 \\
3 & 1
\end{pmatrix} =
\begin{pmatrix}
1 & 2 & 3 \\
3 & 2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0
\end{pmatrix}
\]
\[A \neq B \neq C \neq D\]

\[A \geq B \geq C \geq D\]

\[3 \times 1 = 3\]

\[2 \times 1 = 2\]

\[3 \times 2 = 6\]

\[A \geq B \geq C \geq D\]
3 \beta \in \text{Hom} \ \text{as} \ A. \beta = \beta. \ A = I

\text{A C H} \in \text{H} \ \text{A} \ \text{J} \ \text{H} \\
\text{A H} \in \text{H} \ \text{A} \ \text{J} \ \text{H}

\begin{pmatrix}
11 & -1 \\
-1 & 11
\end{pmatrix}

\begin{pmatrix}
1 & 3 \\
-1 & 1
\end{pmatrix}

\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}

\begin{pmatrix}
3 & 2 \\
2 & 3
\end{pmatrix}

\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\(A \ominus 1 = B_1 A_1 \)

\((A_1 A) \ominus 3 = 4 \perp A \)

\(A = A_1 \)

\(A_1 = \frac{1}{2} A \)

Chapter: Variable and Matrix Algebra

\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]
\[
A = \begin{pmatrix}
0 & 0 \\
0 & 2
\end{pmatrix}
\]

Solution:
\[
A^2 = \begin{pmatrix}
0 & 0 \\
0 & 4
\end{pmatrix}
\]

Since \(A^2\) is not equal to \(A\), \(A\) is not in Jordan normal form. Moreover, \(A\) is not even diagonalizable.
\[\forall \theta \in (0, \pi) = 3 \]
Consider the algebraic system

\begin{align*}
&\begin{vmatrix}
2 & 3 & 4 \\
0 & 1 & 2 \\
1 & 0 & 1
\end{vmatrix} = 0 \\
&\begin{vmatrix}
1 & 2 & 3 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{vmatrix} = 0 \\
&\begin{vmatrix}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 2 & 1
\end{vmatrix} = 0
\end{align*}
My 11. 15

- We can help you
+ We can help you

I do not know Computation

I do not know Computation

I do not know Computation

- We can help you
+ We can help you

Our site info you a city for you.

Some other info you a city for you.
\[y = 2 \left(\frac{1}{x} - 3 \right) - 4 \]

\[f(x) = \frac{3}{x} + 2 \]

\[\frac{2}{x} = 0 \]

\[(3, 0) \quad (0, 2) \]

\[(1, 1) \quad (1, -2) \]

\[\text{Intersection with } y = 0 \]

\[y = 2 - x + 2 \cdot 0 + 2 \cdot (0 - 2) = 2 - 6 = -4 \]

\[\begin{vmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{vmatrix} = 1 \cdot 0 + 1 \cdot 2 + 2 \cdot 1 = 4 \]

\[\text{Intersection with } x = 0 \]